Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jones, L.A. ; Div. of Biol. Sci., Univ. of Montana, Poison, MT, USA ; Ferguson, C.R. ; Kimball, J.S. ; Ke Zhang
more authors

We present an approach to retrieve daily minimum and maximum 2-m height air temperatures from 18.7, and 23.8 GHz H and V polarized brightness temperature from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) during the snow free season. The approach accounts, with minimal ancillary data, for vertically integrated atmospheric water vapor, and variable surface emissivity due to open water and vegetation. Retrieved temperatures were evaluated using Northern Hemisphere weather stations and independent satellite-based air temperatures from the Atmosphere Infrared Sounder and Advanced Microwave Sounding Unit (AIRS/AMSU; hereafter AIRS) sensors on Aqua. The retrieved temperatures are within 1.0 - 3.5 K of surface weather station measurements for vegetated locations, but uncertainty can exceed 4 K for desert and sparsely vegetated regions, mainly due to site to site biases. The AIRS and AMSR-E temperature retrievals generally agree more closely with one another than with weather stations and are generally within 1.0-2.8 K over vegetated regions, but with less agreement ( > 4 K ) over desert and mountainous regions. Additional useful information produced by our approach includes open water fraction, vegetation optical depth and atmospheric water vapor. The results of this study provide inputs for land surface models and a new approach for monitoring of land surface air temperatures with well quantified accuracy and precision.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:3 ,  Issue: 1 )