Cart (Loading....) | Create Account
Close category search window
 

Lattice Point Sets for Deterministic Learning and Approximate Optimization Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cervellera, C. ; Ist. di Studi sui Sist. Intelligenti per l''Autom., Consiglio Naz. delle Ric., Genoa, Italy

In this brief, the use of lattice point sets (LPSs) is investigated in the context of general learning problems (including function estimation and dynamic optimization), in the case where the classic empirical risk minimization (ERM) principle is considered and there is freedom to choose the sampling points of the input space. Here it is proved that convergence of the ERM principle is guaranteed when LPSs are employed as training sets for the learning procedure, yielding up to a superlinear convergence rate under some regularity hypotheses on the involved functions. Preliminary simulation results are also provided.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.