By Topic

Semisupervised Neural Networks for Efficient Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ratle, F. ; Inst. of Geomatics & Anal. of Risk, Univ. of Lausanne, Lausanne, Switzerland ; Camps-Valls, G. ; Weston, J.

A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k-means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 5 )