By Topic

Robust State Estimation for Neural Networks With Discontinuous Activations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoyang Liu ; Dept. of Math., Southeast Univ., Nanjing, China ; Jinde Cao

Discontinuous dynamical systems, particularly neural networks with discontinuous activation functions, arise in a number of applications and have received considerable research attention in recent years. In this paper, the robust state estimation problem is investigated for uncertain neural networks with discontinuous activations and time-varying delays, where the neuron-dependent nonlinear disturbance on the network outputs are only assumed to satisfy the local Lipschitz condition. Based on the theory of differential inclusions and nonsmooth analysis, several criteria are presented to guarantee the existence of the desired robust state estimator for the discontinuous neural networks. It is shown that the design of the state estimator for such networks can be achieved by solving some linear matrix inequalities, which are dependent on the size of the time derivative of the time-varying delays. Finally, numerical examples are given to illustrate the theoretical results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 6 )