Cart (Loading....) | Create Account
Close category search window
 

Edge Adaptive Image Steganography Based on LSB Matching Revisited

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weiqi Luo ; Guangdong Key Lab. of Inf. Security Technol., Sun Yat-Sen Univ., Guangzhou, China ; Fangjun Huang ; Jiwu Huang

The least-significant-bit (LSB)-based approach is a popular type of steganographic algorithms in the spatial domain. However, we find that in most existing approaches, the choice of embedding positions within a cover image mainly depends on a pseudorandom number generator without considering the relationship between the image content itself and the size of the secret message. Thus the smooth/flat regions in the cover images will inevitably be contaminated after data hiding even at a low embedding rate, and this will lead to poor visual quality and low security based on our analysis and extensive experiments, especially for those images with many smooth regions. In this paper, we expand the LSB matching revisited image steganography and propose an edge adaptive scheme which can select the embedding regions according to the size of secret message and the difference between two consecutive pixels in the cover image. For lower embedding rates, only sharper edge regions are used while keeping the other smoother regions as they are. When the embedding rate increases, more edge regions can be released adaptively for data hiding by adjusting just a few parameters. The experimental results evaluated on 6000 natural images with three specific and four universal steganalytic algorithms show that the new scheme can enhance the security significantly compared with typical LSB-based approaches as well as their edge adaptive ones, such as pixel-value-differencing-based approaches, while preserving higher visual quality of stego images at the same time.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:5 ,  Issue: 2 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.