Cart (Loading....) | Create Account
Close category search window
 

EM Algorithm State Matrix Estimation for Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Einicke, G.A. ; Commonwealth Sci. & Ind. Res. Organ. (CSIRO), Pullenvale, QLD, Australia ; Falco, G. ; Malos, J.T.

The convergence of an expectation-maximization (EM) algorithm for state matrix estimation is investigated. It is shown for the expectation step that the design and observed error covariances are monotonically dependent on the residual error variances. For the maximization step, it is established that the residual error variances are monotonically dependent on the design and observed error covariances. The state matrix estimates are observed to be unbiased when the measurement noise is negligible. A navigation application is discussed in which the use of estimated parameters improves filtering performance.

Published in:

Signal Processing Letters, IEEE  (Volume:17 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.