Cart (Loading....) | Create Account
Close category search window
 

Potentials and development of amorphous silicon carbide heterojunction solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pysch, D. ; Fraunhofer Inst. for Solar Energy Syst., Freiburg, Germany ; Ziegler, J. ; Becker, J.-P. ; Suwito, D.
more authors

In this paper the potential of amorphous silicon carbide used as an emitter for silicon heterojunction solar cells is presented. Especially the annealing behaviour of the open-circuit voltage Voc of n-doped amorphous silicon carbide heterojunction emitter solar cells is investigated in detail. We present our results of a significant open-circuit voltage improvement of more than 100 mV on both a flat and a textured front surface triggered by thermal annealing on a hot plate. The observed open-circuit voltage behaviour can be described best by a stretched exponential function, which in general describes relaxation rates in complex systems. Further we investigated the optimum conditions of a post deposition annealing step in order to reach the highest efficiency. During this analysis we also observed deterioration in solar cell performance when the structure is annealed for a very long time. In conclusion, we suppose that a diffusion of weakly bonded or free hydrogen, activated by the annealing which saturates dangling bonds in the amorphous layer itself and most likely more important at the heterojunction interface, is responsible for the strong improvement in Voc and efficiency.

Published in:

Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE

Date of Conference:

7-12 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.