By Topic

Asynchronous logic for high variability nano-CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Martin, A.J. ; California Inst. of Technol., Pasadena, CA, USA

At the nanoscale level, parameter variations in fabricated devices cause extreme variability in delay. Delay variations are also the main issue in subthreshold operation. Consequently, asynchronous logic seems an ideal, and probably unavoidable choice, for the design of digital circuits in nano CMOS or other emerging technologies. This paper examines the robustness of one particular asynchronous logic: quasi-delay insensitive or QDI. We identify the three components of this logic that can be affected by extreme variability: staticizer, isochronic fork, and rings. We show that staticizers can be eliminated, and isochronic forks and rings can be made arbitrarily robust to timing variations.

Published in:

Electronics, Circuits, and Systems, 2009. ICECS 2009. 16th IEEE International Conference on

Date of Conference:

13-16 Dec. 2009