Cart (Loading....) | Create Account
Close category search window
 

A Type-2 Fuzzy Ontology and Its Application to Personal Diabetic-Diet Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang-Shing Lee ; Dept. of Comput. Sci. & Inf. Eng., Nat. Univ. of Tainan, Tainan, Taiwan ; Mei-Hui Wang ; Hagras, H.

It has been widely pointed out that classical ontology is not sufficient to deal with imprecise and vague knowledge for some real-world applications like personal diabetic-diet recommendation. On the other hand, fuzzy ontology can effectively help to handle and process uncertain data and knowledge. This paper proposes a novel ontology model, which is based on interval type-2 fuzzy sets (T2FSs), called type-2 fuzzy ontology (T2FO), with applications to knowledge representation in the field of personal diabetic-diet recommendation. The T2FO is composed of 1) a type-2 fuzzy personal profile ontology ( type-2 FPPO); 2) a type-2 fuzzy food ontology ( type-2 FFO); and 3) a type-2 fuzzy-personal food ontology (type-2 FPFO). In addition, the paper also presents a T2FS-based intelligent diet-recommendation agent ( IDRA), including 1) T2FS construction; 2) a T2FS-based personal ontology filter; 3) a T2FS-based fuzzy inference mechanism; 4) a T2FS-based diet-planning mechanism; 5) a T2FS-based menu-recommendation mechanism; and 6) a T2FS-based semantic-description mechanism. In the proposed approach, first, the domain experts plan the diet goal for the involved diabetes and create the nutrition facts of common Taiwanese food. Second, the involved diabetics are requested to routinely input eaten items. Third, the ontology-creating mechanism constructs a T2FO, including a type-2 FPPO, a type-2 FFO, and a set of type-2 FPFOs. Finally, the T2FS-based IDRA retrieves the built T2FO to recommend a personal diabetic meal plan. The experimental results show that the proposed approach can work effectively and that the menu can be provided as a reference for the involved diabetes after diet validation by domain experts.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 2 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.