Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Two-Stage Isolated Switch-Mode Power Supply With High Efficiency and High Input Power Factor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gallo, C.A. ; Fed. Univ. of Uberlandia, Uberlandia, Brazil ; Tofoli, F.L. ; Pinto, J.A.C.

This paper presents the conception and analysis of a switch-mode power supply (SMPS) with desirable characteristics of high-frequency isolation, high input power factor, low harmonic distortion, and high efficiency. Nearly unity input power factor can be obtained by using an interleaved boost converter associated with a nondissipative snubber, as high efficiency of the ac-dc front-end stage results. Additionally, a soft-switching full-bridge topology performs the dc-dc conversion, providing isolation to the SMPS by using a high-frequency transformer. By cascading both stages, the aforementioned characteristics are achieved. Theoretical background on each one of the converters is presented, and experimental results obtained from a laboratory prototype are presented and discussed in order to validate the proposal. In addition, the evaluation tests demonstrate the operation with nearly unity power factor, high efficiency, and good dynamic response over a wide load range.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 11 )