By Topic

Temperature Effects on Silicon-on-Insulator (SOI) Racetrack Resonators: A Coupled Analytic and 2-D Finite Difference Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nicolas Rouger ; Grenoble Electrical Engineering lab (G2eLab), St Martin d'Hères Cedex, France ; Lukas Chrostowski ; Raha Vafaei

This paper presents a detailed analysis of racetrack resonators on silicon on insulator substrates. Both the temperature effects and the particularities of silicon nanophotonics are considered throughout the approach. This paper provides a detailed description of the numerical modeling and its application to different designs, while providing several charts and fitting equations. The results presented in this paper can be applied to three major applications: Thermo-optical tuning of optical resonators, thermo-optical modulator and wide range/high sensitivity temperature sensors. While quantifying the temperature effects, this paper also provides useful answers on how critical the temperature parameter is in the optical cavity behaviour.

Published in:

Journal of Lightwave Technology  (Volume:28 ,  Issue: 9 )