By Topic

A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Cui ; Sch. of Phys. & Eng., King''s Coll. London, London, UK ; Dai, J.S.

This paper investigates the kinematics of spin-rolling motion of rigid objects. This paper does not consider slipping but applies a Darboux frame to develop kinematics of spin-rolling motion, which occurs in a nonholonomic system. A new formulation of spin-rolling motion of the moving object is derived in terms of contravariant vectors, rolling velocity, and geometric invariants, including normal curvature, geodesic curvature, and geodesic torsion of the respective contact curve. The equation is represented with geometric invariants. It can be readily generalized to suit both arbitrary parametric surface and contact trajectory and can be differentiated to any order. Effect of the relative curvatures and torsion on spin-rolling kinematics is explicitly presented. The translation velocity of an arbitrary point on the moving object is also derived based on the Darboux frame.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )