By Topic

Object Tracking in Video Images Using Hybrid Segmentation Method and Pattern Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patra, D. ; Electr. Eng. Dept., Nat. Inst. of Technol., Rourkela, India ; Santosh Kumar, K. ; Chakraborty, D.

In this paper we propose a novel method for object tracking in video images. The method is based on image segmentation and pattern matching. All moving and still objects in video images can be detected accurately with the help of efficient image segmentation techniques. We propose a hybrid algorithm for image segmentation using the notion of Particle Swarm Optimization (PSO) and Fuzzy-C-Means (FCM) clustering techniques. The results obtained using segmentation of successive frames are exploited for pattern matching in a simple feature space. As a consequence, multiple moving and still objects in video images are tracked simultaneously. We perform simulation experiments on object tracking to validate the efficiency of our proposed algorithm. The algorithm outperforms the existing algorithm in context of accuracy and time complexity.

Published in:

India Conference (INDICON), 2009 Annual IEEE

Date of Conference:

18-20 Dec. 2009