Cart (Loading....) | Create Account
Close category search window

Structural and electrical properties of ZnO nanorods and Ti buffer layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kwak, C.-H. ; Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea ; Kim, B.-H. ; Park, C.-I. ; Seo, S.-Y.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Vertically-well-aligned ZnO nanorods were synthesized on Ti buffer layers by a metal-organic chemical-vapor deposition process. Structural analyses demonstrated that the ZnO nanorods were well-aligned in the c-axis and ab-plane. Transmission electron microscopy (TEM) showed that the Ti buffer layer was amorphous and interdiffused into the ZnO nanorods. Energy-dispersive spectroscopy (EDS) analysis revealed the Ti buffer layers to be slightly oxide. Extended x-ray absorption fine structure confirmed the TEM and EDS results. The I-V characteristic measurements showed a 20-fold increase in current density with the Ti buffer layer, suggesting excellent electrical contact between the Ti buffer layer and ZnO nanorods.

Published in:

Applied Physics Letters  (Volume:96 ,  Issue: 5 )

Date of Publication:

Feb 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.