By Topic

Adaptive Signal Detection with Finite Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ernest G. Baxa ; Research Triangle Institute, Research Triangle Park, N.C. 27709. ; Loren W. Nolte

The purpose of this presentation is to develop and evaluate an algorithm for determining a finite memory detector applicable to statistical signal detection theory. In the Bayesian signal detection theory, infinite soft or changeable memory is tacitly assumed. Since an infinite memory is physically unrealizable, this study postulates a finite memory scheme which is applicable to a large class of signal detection problems. A general sequentially operating finite memory detector design is obtained and then evaluated for the signal known exactly and the signal known except amplitude problems. Detection performance as a function of memory size is presented for finite observation records using the receiver operating characteristic and plots of probability of decision error versus time. These results show the tradeoff between memory size and processing time to achieve a given detection performance. An important result is that for finite sample records a small finite memory detector with a memory size on the order of 7 states, i.e., a 3-bit computer word, yields detection performance very near that of the optimum infinite memory detector.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:SMC-2 ,  Issue: 1 )