By Topic

On the classification of moving objects in image sequences using 3D adaptive recursive tracking filters and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bruton, L.T. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Bartley, N.R. ; Liu, Z.Q.

It is shown that 3D recursive filters may be used to classify the motion of objects in discrete-time spatiotemporal 3D image sequences. The 3D filter has a time-varying 3D frequency-planar passband that is adapted in a feedback system to automatically track a moving object on the basis of its smoothly changing trajectory, thereby rejecting noise and stopband objects that are not of interest. The adaptive spacetime velocity vector of the passband object is available within this feedback system and is used as the input to a multi-layer perceptron neural network which classifies the motion of the passband object according to a number of motion characteristics, such as its direction of travel, velocity, acceleration as a function of time and position and its stopping time. It is shown that such a system may be used to classify the motion of vehicles at an intersection of roads.

Published in:

Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on  (Volume:2 )

Date of Conference:

Oct. 30 1995-Nov. 1 1995