By Topic

Receive antenna selection for unitary space-time modulation over semi-correlated Ricean channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ramezani, M. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada ; Hajiaghayi, M. ; Tellambura, C. ; Ardakani, M.

Receive antenna selection for unitary space-time modulation (USTM) over semi-correlated Ricean fading channels is analyzed (this work generalizes that of Ma and Tepedelenlio-glu for the independent and identically distributed (i.i.d.) Rayleigh fading case). The antenna selection rule is that the receive antennas with the largest signal powers are chosen. For single antenna selection, we derive the maximum likelihood decoding for the correlated Ricean case. We also derive the Chernoff bound on the pairwise error probability for the high signal to- noise ratio (SNR) region and obtain the coding gain and diversity order. Our results show that even when there are transmitter side correlations and a line of sight component, receive antenna selection with USTM preserves the full diversity order if the USTM constellation is of full rank. We also give an approximation to the distribution function of a quadratic form of non-zero mean complex Gaussian variates (from Nabar et al.) at the high SNR region. Based on this approximation, a closed-form expression for the coding gain is also obtained and compared with that of the i.i.d. Rayleigh case. We also analyze the case of multiple receive antenna selection and derive the coding gain and diversity order. We show that USTM constellations, which have been proposed for the i.i.d. Rayleigh channel, can be used with the correlated Ricean channel as well.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 2 )