Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Design of irregular LDPC codes with optimized performance-complexity tradeoff

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Smith, B. ; Electr. & Comput. Eng. Dept., Univ. of Toronto, Toronto, ON, Canada ; Ardakani, M. ; Wei Yu ; Kschischang, F.R.

The optimal performance-complexity tradeoff for error-correcting codes at rates strictly below the Shannon limit is a central question in coding theory. This paper proposes a numerical approach for the minimization of decoding complexity for long-block-length irregular low-density parity-check (LDPC) codes. The proposed design methodology is applicable to any binary-input memoryless symmetric channel and any iterative message-passing decoding algorithm with a parallel-update schedule. A key feature of the proposed optimization method is a new complexity measure that incorporates both the number of operations required to carry out a single decoding iteration and the number of iterations required for convergence. This paper shows that the proposed complexity measure can be accurately estimated from a density-evolution and extrinsic-information transfer chart analysis of the code. A sufficient condition is presented for convexity of the complexity measure in the variable edge-degree distribution; when it is not satisfied, numerical experiments nevertheless suggest that the local minimum is unique. The results presented herein show that when the decoding complexity is constrained, the complexity-optimized codes significantly outperform threshold-optimized codes at long block lengths, within the ensemble of irregular codes.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 2 )