By Topic

Simulation embedded artificial intelligence search method for supplier trading portfolio decision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Feng, D. ; Dept. of Electr. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Yan, Z. ; stergaard, J. ; Xu, Z.
more authors

An electric power supplier in the deregulated environment needs to allocate its generation capacities to participate in contract and spot markets. Different trading portfolios will provide suppliers with different future revenue streams of various distributions. The classical mean-variance (MV) method is inappropriate to deal with the trading portfolios whose return distribution is non-normal. In order to consider the non-normal characteristics in electricity trading, this study proposes a new model based on expected utility theory (EUT) and employs a hybrid genetic algorithm (GA) - Monte-Carlo simulation technique as solution approach. In the real market data-based numerical studies, the performances of the proposed method and the standard MV method are compared. It was found that the proposed method is able to obtain better portfolios than MV method when non-normal asset exists for trading. The simulation results also reveal the accumulation effect along trading period, which will improve the normality of the supplier trading portfolios. The authors believe the proposed method is a useful complement for the MV method and conditional value at risk (CVaR)-based methods in the supplier trading portfolio decision and evaluation.

Published in:

Generation, Transmission & Distribution, IET  (Volume:4 ,  Issue: 2 )