Cart (Loading....) | Create Account
Close category search window
 

Bilevel programming applied to power system vulnerability analysis under multiple contingencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Arroyo, J.M. ; Dept. de Ing. Electr., Electron., Autom. y Comun., Univ. de Castilla - La Mancha, Ciudad Real, Spain

This study examines the use of bilevel programming to analyse the vulnerability of power systems under multiple contingencies. One of the main purposes of this study is to explain the state of the art of the subject matter. A minimum vulnerability model and a maximum vulnerability model are presented and discussed. In both models, the upper-level optimisation determines a set of simultaneous outages in the transmission network whereas the lower-level optimisation models the reaction of the system operator against the outages identified in the upper level. The system operator reacts by minimising the system load shed through an optimal operation of the power system. Two solution approaches for the resulting mixed-integer non-linear bilevel programs are analysed and compared. Both methodologies are based on the equivalent transformation of the lower-level problem into a set of constraints, so that the original bilevel programs, respectively, become a single-level optimisation problem. The first approach is based on the application of Karush-Kuhn-Tucker optimality conditions whereas the second procedure relies on duality theory. This study shows that both approaches are essentially equivalent from a rigorous mathematical viewpoint; however, the second method is more suitable for off-the-shell branch-and-cut software as corroborated by numerical simulations.

Published in:

Generation, Transmission & Distribution, IET  (Volume:4 ,  Issue: 2 )

Date of Publication:

February 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.