Cart (Loading....) | Create Account
Close category search window
 

Multicore cluster implementations of hierarchical Bayesian cortical models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yalamanchili, P. ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Taha, T.M.

We examine the parallelization of two recent biologically inspired hierarchical Bayesian cortical models onto two multicore processor based clusters. The models examined have been developed recently based on new insights from neuroscience and have several advantages over traditional neural network models. In particular, they need far fewer network nodes to simulate a biological scale cortical system than traditional neural network models, thus making them computationally more efficient. The two architectures examined are the Sony/Toshiba/IBM Cell BE and the Intel quad-core Xeon processors. Our results indicate that optimized implementations of the models on clusters of multicore processors can provide significant speedups and that such clusters are a promising approach for developing large scale simulations of the models. We show that for small scale implementations of the models, multicore clusters can provide speedups of about 850 times over serial implementations on the cell power processor unit.

Published in:

Computers and Information Technology, 2009. ICCIT '09. 12th International Conference on

Date of Conference:

21-23 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.