By Topic

Three algorithms for learning artificial neural network: A comparison for induction motor flux estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rafiq, M.A. ; Dept. of Electr. & Electron. Eng., Khulna Univ. of Eng. & Technol. (KUET), Khulna, Bangladesh ; Roy, N.K. ; Ghosh, B.C.

This paper presents a comparative study of three algorithms for learning artificial neural network. As neural estimator, back-propagation (BP) algorithm, uncorrelated real time recurrent learning (URTRL) algorithm and correlated real time recurrent learning (CRTRL) algorithm are used in the present work to learn the artificial neural network (ANN). The approach proposed here is based on the flux estimation of high performance induction motor drives. Simulation of the drive system was carried out to study the performance of the motor drive. It is observed that the proposed CRTRL algorithm based methodology provides better performance than the BP and URTRL algorithm based technique. The proposed method can be used for accurate measurement of the rotor flux.

Published in:

Computers and Information Technology, 2009. ICCIT '09. 12th International Conference on

Date of Conference:

21-23 Dec. 2009