By Topic

Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohammad Nurul Huda ; Department of CSE, United International University, Dhaka, Bangladesh ; Manoj Banik ; Ghulam Muhammad ; Bernd J. Kroger

This paper presents a phoneme recognition method based on distinctive phonetic features (DPFs). The method comprises three stages. The first stage extracts 3 DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and language models (LMs) of syllable-based subwords to output more precise phoneme strings. The proposed method provides a higher phoneme correct rate as well as phoneme accuracy with fewer mixture components in hidden Markov models (HMMs).

Published in:

Computers and Information Technology, 2009. ICCIT '09. 12th International Conference on

Date of Conference:

21-23 Dec. 2009