By Topic

Predictive power of the daily Bangladeshi exchange rate series based on Markov model, neuro fuzzy model and conditional heteroskedastic model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banik, S. ; Sch. of Eng. & Comput. Sci., Indep. Univ., Dhaka, Bangladesh ; Anwer, M. ; Khan, A.F.M.K.

Forecasting exchange rate is very important for many international agents e.g. investors, money managers, investment banks, funds makers and others. We forecasted the daily Bangladeshi exchange rate series for the period of January 1992 to March 2009 using popular non-linear forecasting models, namely Markov switching autoregressive model, fuzzy extension of artificial neural network model (ANFIS) and generalized autoregressive conditional heteroscedastic model. Our target is to investigate whether selected models can serve as useful forecasting models to find volatile and non-linear behaviors of the considered series. By most commonly used statistical measures: mean absolute percentage error, root mean square error and coefficient of determination, we found that ANFIS is a superior predictor than other two selected predictors. We believe findings of this paper will be helpful to make a wide range of policies for multinational companies who are involved with various international business activities.

Published in:

Computers and Information Technology, 2009. ICCIT '09. 12th International Conference on

Date of Conference:

21-23 Dec. 2009