Cart (Loading....) | Create Account
Close category search window

Optical properties of ZnO/Zn0.9Mg0.1O multiple quantum wells grown on (111) Si using buffer assisted pulsed-laser deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This work investigates the photoluminescence properties of ZnO/Zn0.9Mg0.1O multiple quantum wells (MQWs), which have been fabricated by pulsed-laser deposition on (111) Si substrates using intervening epitaxial Lu2O3 buffer layers. In ZnO/Zn0.9Mg0.1O MQWs, the luminescence is dominated by localized exciton (LE) emission throughout the whole temperature range studied. With increasing temperature from 10 to 300 K, the LE emission redshifts by 38 meV. This redshift is believed to be due to the thermalized excitons occupying higher-lying localized states where they emit higher energy radiation and temperature-induced band gap shrinkage. Moreover, the LE emission from the MQWs decays more slowly than exciton emission from ZnO. In addition, the LE emission in the MQWs shows a systematic blueshift with decreasing well width, which is consistent with a quantum size effect.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 3 )

Date of Publication:

Feb 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.