By Topic

Field-Based Validation of a Tactile Navigation Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Elliott, L.R. ; Army Res. Lab. Field Element, US Army Infantry Center, Fort Benning, GA, USA ; van Erp, J. ; Redden, E.S. ; Duistermaat, M.

In this paper, we present three field-based evaluations of a tactile land navigation system. In Experiment 1, we transition from a laboratory setting to rugged terrain used to train US Army soldier land navigation. Navigation in this challenging terrain requires careful attention to one's surroundings. Participants navigated 3 waypoints along 600 meters through heavily wooded terrain, using 1) map and compass, 2) standard alpha-numeric handheld GPS device, and 3) the tactile GPS system, while also responding to radio requests for information. Experiment 2 used the same challenging terrain during night operations, where participants must also search for live and silhouette targets, using 1) handheld GPS device, 2) head-mounted map-based GPS, and 3) the tactile GPS system. In addition to navigating, participants searched for silhouette and live (human) targets. Experiment 3 had participants navigate with 1) a commercial GPS arrow display, 2) the tactile GPS system, and 3) both together. We conclude that tactile navigation displays can be used in strenuous outdoor environments and can outperform visual displays under conditions of high cognitive and visual workload.

Published in:

Haptics, IEEE Transactions on  (Volume:3 ,  Issue: 2 )