By Topic

A Distributed Approach of Proportional Bandwidth Allocation for Real-Time Services in UltraWideBand (UWB) WPANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Quality of service (QoS) provisioning is one of the most important criteria in newly emerging UWB WPANs, as they are expected to support a wide variety of applications from time-constrained, multimedia streaming to throughput-hungry, content transfer applications. Recently, the WiMedia Alliance has announced the PHY/MAC specification together with the common radio platform for UWB WPANs. The WiMedia MAC uses the contention-free reservation-based access, which supports isochronous traffic with distributed reservation protocol (DRP), and the contention-based access, which provides service differentiation for best effort and variable-rate real-time traffic with prioritized channel access (PCA), similar to the enhanced distributed coordinated access (EDCA) in IEEE 802.11e. In this paper, we conduct a comprehensive theoretical analysis and show that with the currently recommended parameter setting, EDCA cannot provide adequate QoS. In particular, without responding to the system dynamics (e.g., taking account of the number of active stations in each class), EDCA cannot allocate bandwidth in a deterministic proportional manner and the system bandwidth is underutilized. After identifying the deficiency of EDCA, we propose an enhanced QoS-provisioning framework for the PCA scheme that dynamically controls channel access to adjust allocated bandwidth depending on the change of application's bit rate, i.e., variable-rate real-time traffic. We show that in this framework, 1) variable-rate real-time traffic is adaptively guaranteed of deterministic bandwidth via a contention-based reservation access method; 2) best effort traffic is provided with deterministic proportional QoS; and 3) moreover, the bandwidth utilization in PCA is maximized. By deterministic proportional QoS, we mean that the proposed protocol will maintain the ratio, rj, of per-station throughput attained by a station of class j to that attained by a station of class 1 at the targeted value, and yet- - , the real amount of network bandwidth is changing according to the current available network bandwidth. We have also validated and evaluated the QoS provisioning capability and practicality of the proposed PCA framework both via simulation and an empirical study with the Multiband Atheros Driver for WiFi (MADWifi) Linux driver for Wireless LAN devices with the Atheros chipset.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:21 ,  Issue: 11 )