By Topic

Motion Parameter Estimation in the SAR System With Low PRF Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Qisong Wu ; Nat. Key Lab. of Radar Signal Process., Xidian Univ., Xi''an, China ; Mengdao Xing ; Qiu, Chengwei ; Liu, H.W.
more authors

A novel approach to motion parameter estimation with low pulse repetition frequency (PRF) sampling based on compressed sensing (CS) theory is introduced. As is known to us, when PRF is less than the Doppler spectrum bandwidth, moving targets suffer both Doppler centroid frequency ambiguity and Doppler spectrum ambiguity. Under this condition, the traditional parameter estimation method in the Doppler domain is out of action. The key of this letter converts motion parameter estimation in the synthetic aperture radar system with low PRF sampling into solving an optimization equation based on CS theory. Because moving targets in the scene can be regarded as sparse signals after clutter cancellation, an optimization algorithm based on CS theory is proposed to reconstruct sparse signals and meanwhile estimate the along-track velocities and azimuth positions of moving targets. Considering the fact that range cell migration of moving targets is not subject to PRF limitations, Radon transform is adopted to obtain unambiguous across-track velocities and range positions. Results on simulation and real data are provided to show the effectiveness of this method.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 3 )