By Topic

Sub-1 V Input Single-Inductor Dual-Output (SIDO) DC–DC Converter With Adaptive Load-Tracking Control (ALTC) for Single-Cell-Powered Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Hsin Huang ; Dept. of Electr. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yu-Nong Tsai ; Ke-Horng Chen

In this paper, a sub-1 V input single-inductor dual-output (SIDO) dc-dc converter with an adaptive load-tracking control (ALTC) technology is proposed for single-cell-powered portable devices. Having a minimal number of switches and an optimum current sequence, the proposed ALTC technique adaptively and accurately adjusts storage energy in the form of inductor current according to the actual load condition, without wasting surplus charge and without increasing cross regulation. Moreover, a current-mode ring oscillator with a self-bias current source circuit, in place of the conventional start-up ring oscillator, is proposed to produce a nearly constant system clock for the requirement of sub-1 V start-up procedure. Because the proposed current-mode ring oscillator operates between the start-up process and steady state of the SIDO dc-dc converter, its simplified design efficiently addresses the high switching frequency losses at sub-1 V start-up procedure, reducing chip area and power consumption. The proposed sub-1 V input SIDO dc-dc converter was fabricated via Taiwan Semiconductor Manufacturing Company 0.25 μm 2.5 V/5 V Bipolar-CMOS-DMOS process, and the experimental results show high efficiency of 92% with a good cross regulation smaller than 10 mV.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 7 )