By Topic

Particle swarm optimization using adaptive local search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Tang ; Dept. of Inf. Eng., Hunan Urban Constr. Coll., Xiangtan, China ; Xiaojuan Zhao

Particle swarm optimization (PSO) is a powerful stochastic evolutionary algorithm that is used to find the global optimum solution in search space. However, PSO often easily fall into local minima because the particles could quickly converge to a position by the attraction of the best particles. Under this circumstance, all the particles could hardly be improved. This paper presents a hybrid PSO, namely LSPSO, to solve this problem by employing an adaptive local search operator. Experimental results on 8 well-known benchmark problems show that LSPSO achieves better results than the standard PSO, PSO with Gaussian mutation and PSO with Cauchy mutation on majority of test problems.

Published in:

BioMedical Information Engineering, 2009. FBIE 2009. International Conference on Future

Date of Conference:

13-14 Dec. 2009