By Topic

Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaotong Zhang ; Dept. of Biomed. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Shanan Zhu ; Bin He

The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate calculation, a major concern in high-field MRI, as well as in nonmedical areas such as wireless telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the RF radiation is dependent on the EPs of biological tissue. On the basis of the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the EPs of biological tissues. The finite-element method was utilized in 3-D modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3-D head model within a TEM coil and a birdcage coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12%-28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping-based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of EPs from B1 mapping can be achieved.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 2 )