Cart (Loading....) | Create Account
Close category search window

Performance evaluation for optical network-on-chip interconnect architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Shiqing ; State Key Lab of ISN, Xidian University, Xi''an, China 710071 ; Huaxi Gu

A large number of IP cores will be included in the future systems-on-chip (SoC). Traditional bus-based architectures are no longer suitable for modern chip design, since it is difficult to expand, consumes much power and takes much area. Network-on-chip (NoC), which employs networks to replace buses as a scalable global communication platform, has been proposed to cope with these problems. However, limited bandwidth, long delay and high power consumption will become bottlenecks as NoC scales to large sizes. Based on silicon optical interconnect, optical network-on-chip (ONoC) can offer significant bandwidth and power advantages, which provides a promising solution to overcome these limitations. In this paper, we simulated and compared several ONoCs based on the topologies including 2D Mesh, 3D Mesh, 2D Fat Tree(FT) and 2D Butterfly Fat Tree(BFT) in terms of the end-to-end delay and network throughput. The results showed that 3D Mesh has the best performance among the listed topologies.

Published in:

Communications and Photonics Conference and Exhibition (ACP), 2009 Asia  (Volume:2009-Supplement )

Date of Conference:

2-6 Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.