By Topic

Study of IQ imbalance effect in direct-detection optical OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Xinying Li ; The State Key Lab of ASIC & System, Department of Communication Science and Engineering, Fudan University, Shanghai, 200433, China ; Yufeng Shao ; Shumin Zou ; Chunning Hou
more authors

In-phase/quadrature-phase (IQ) imbalance can result in severe performance degradation in optical direct-detection orthogonal-frequency-division-multiplexing (DD-OFDM) systems. We build two optical back-to-back DD-OFDM systems, which implement double-sideband (DSB) and single-sideband (SSB) modulation, respectively. The tolerance to IQ imbalance of these two systems is analyzed and compared using error vector magnitude (EVM) and symbol error rate (SER). We find that, in the back-to-back case, the DSB system has stronger robustness to IQ imbalance than the SSB System. We further build two optical DD-OFDM systems each with 40-km transmission, which respectively implement DSB and SSB transmission. Similarly, we analyze and compare the tolerance to IQ imbalance of these two systems in terms of EVM and SER. We find that, however, in the case of 40-km transmission, the SSB system has stronger robustness to IQ imbalance than the DSB system. As a result, we conclude that, in the case of transmission, SSB modulation can enhance the tolerance to IQ imbalance of DD-OFDM systems.

Published in:

Communications and Photonics Conference and Exhibition (ACP), 2009 Asia  (Volume:2009-Supplement )

Date of Conference:

2-6 Nov. 2009