By Topic

Online Monitoring of Voltage Stability Margin Using an Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Debbie Q. Zhou ; Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada ; U. D. Annakkage ; Athula D. Rajapakse

In this paper, an artificial neural network (ANN) based method is developed for quickly estimating the long-term voltage stability margin. The investigation presented in the paper showed that node voltage magnitudes and the phase angles are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. If the voltage magnitudes and phase angles are obtained in real-time from phasor measurement units (PMUs) using the proposed method, the voltage stability margin can be estimated in real time and used for initiating stability control actions. Finally, a suboptimal approach to determine the best locations for PMUs is presented. Numerical examples of the proposed techniques are presented using the New England 39-bus test system and a practical power system which consists of 1844 buses, 746 load buses, and 302 generator buses.

Published in:

IEEE Transactions on Power Systems  (Volume:25 ,  Issue: 3 )