Cart (Loading....) | Create Account
Close category search window
 

Statistical Feature Selection From Massive Data in Distribution Fault Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yixin Cai ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Mo-Yuen Chow ; Wenbin Lu ; Lexin Li

Selecting proper features to identify the root cause is a critical step in distribution fault diagnosis. Power engineers usually select features based on experience. However, engineers cannot be familiar with every local system, especially in fast growing regions. With the advancing information technologies and more powerful sensors, utilities can collect much more data on their systems than before. The phenomenon will be even more substantial for the anticipating Smart Grid environments. To help power engineers select features based on the massive data collected, this paper reviews two popular feature selection methods: 1) hypothesis test, 2) stepwise regression, and introduces another two: 3) stepwise selection by Akaike's Information Criterion, and 4) LASSO/ALASSO. These four methods are compared in terms of their model requirements, data assumptions, and computational cost. With real-world datasets from Progress Energy Carolinas, this paper also evaluates these methods and compares fault diagnosis performance by accuracy, probability of detection and false alarm ratio. This paper discusses the advantages and limitations of each method for distribution fault diagnosis as well.

Published in:

Power Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.