By Topic

Nonbinary Quasi-Cyclic LDPC-Based Coded Modulation for Beyond 100-Gb/s Transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Arabaci, M. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Djordjevic, I.B. ; Saunders, R. ; Marcoccia, R.M.

We propose using coded modulation based on nonbinary quasi-cyclic low-density parity-check (LDPC) codes for beyond 100-Gb/s optical transmission. The proposed scheme not only lowers the latency in the system but also offers much higher coding gains than its binary counterpart based on bit-interleaved coded modulation (BICM). We show that using component LDPC codes over high order finite fields and matching bandwidth-efficient modulations, our scheme can provide around 1-dB coding gain improvement at the bit-error ratio of 10-6 compared to a corresponding BICM-based scheme.

Published in:

Photonics Technology Letters, IEEE  (Volume:22 ,  Issue: 6 )