By Topic

Sensitivity Penalization Based Robust State Estimation for Uncertain Linear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tong Zhou ; Dept. of Autom. & TNList, Tsinghua Univ., Beijing, China

This technical note deals with robust state estimation when parametric uncertainties nonlinearly affect a plant state-space model, based on a simultaneous minimization of nominal estimation errors and their sensitivities. An analytic solution is derived for the optimal estimator which can be recursively realized. This estimator has a form similar to the robust estimator of , and its computational complexity is comparable to the Kalman filter. Under certain conditions, this robust estimator is proved to converge to a stable system, its estimation errors have a bounded covariance matrix, and the estimate is asymptotically unbiased. Numerical simulations show that the obtained estimator has nice estimation performances.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 4 )