By Topic

Convergence Rates of Distributed Average Consensus With Stochastic Link Failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patterson, S. ; Dept. of Mech. Eng., Univ. of California, Santa Barbara, CA, USA ; Bamieh, B. ; El Abbadi, A.

We consider a distributed average consensus algorithm over a network in which communication links fail with independent probability. In such stochastic networks, convergence is defined in terms of the variance of deviation from average. We first show how the problem can be recast as a linear system with multiplicative random inputs which model link failures. We then use our formulation to derive recursion equations for the second order statistics of the deviation from average in networks with and without additive noise. We give expressions for the convergence behavior in the asymptotic limits of small failure probability and large networks. We also present simulation-free methods for computing the second order statistics in each network model and use these methods to study the behavior of various network examples as a function of link failure probability.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 4 )