By Topic

Multiple Fundamental Frequency Estimation by Modeling Spectral Peaks and Non-Peak Regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiyao Duan ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Bryan Pardo ; Changshui Zhang

This paper presents a maximum-likelihood approach to multiple fundamental frequency (F0) estimation for a mixture of harmonic sound sources, where the power spectrum of a time frame is the observation and the F0s are the parameters to be estimated. When defining the likelihood model, the proposed method models both spectral peaks and non-peak regions (frequencies further than a musical quarter tone from all observed peaks). It is shown that the peak likelihood and the non-peak region likelihood act as a complementary pair. The former helps find F0s that have harmonics that explain peaks, while the latter helps avoid F0s that have harmonics in non-peak regions. Parameters of these models are learned from monophonic and polyphonic training data. This paper proposes an iterative greedy search strategy to estimate F0s one by one, to avoid the combinatorial problem of concurrent F0 estimation. It also proposes a polyphony estimation method to terminate the iterative process. Finally, this paper proposes a postprocessing method to refine polyphony and F0 estimates using neighboring frames. This paper also analyzes the relative contributions of different components of the proposed method. It is shown that the refinement component eliminates many inconsistent estimation errors. Evaluations are done on ten recorded four-part J. S. Bach chorales. Results show that the proposed method shows superior F0 estimation and polyphony estimation compared to two state-of-the-art algorithms.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:18 ,  Issue: 8 )