By Topic

Atlas Generation for Subcortical and Ventricular Structures With Its Applications in Shape Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Anqi Qiu ; Division of Bioengineering, National University of Singapore, Singapore ; Timothy Brown ; Bruce Fischl ; Jun Ma
more authors

Atlas-driven morphometric analysis has received great attention for studying anatomical shape variation across clinical populations in neuroimaging research as it provides a local coordinate representation for understanding the family of anatomic observations. We present a procedure for generating atlas of subcortical and ventricular structures, including amygdala, hippocampus, caudate, putamen, globus pallidus, thalamus, and lateral ventricles, using the large deformation diffeomorphic metric atlas generation algorithm. The atlas was built based on manually labeled volumes of 41 subjects randomly selected from the database of Open Access Series of Imaging Studies (OASIS, 10 young adults, 10 middle-age adults, 10 healthy elders, and 11 patients with dementia). We show that the estimated atlas is representative of the population in terms of its metric distance to each individual subject in the population. In the application of detecting shape variations, using the estimated atlas may potentially increase statistical power in identifying group shape difference when comparing with using a single subject atlas. In shape-based classification, the metric distances between subjects and each of within-class estimated atlases construct a shape feature space, which allows for performing a variety of classification algorithms to distinguish anatomies.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 6 )