By Topic

High-Efficiency Automated Nanomanipulation With Parallel Imaging/Manipulation Force Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Xie ; Inst. des Syst. Intelligents et Robot., Univ. Pierre et Marie Curie, Paris, France ; Régnier, S.

The atomic force microscope (AFM) has been widely used to manipulate nanoparticles, nanowires, and nanotubes for applications such as nanostructure building, nanocharacterization, and biomanipulation. However, conventional AFM-based nanomanipulation is inefficient because of the serial scan-manipulation-scan process involved. In this paper, high-efficiency automated nanomanipulation with a parallel imaging/manipulation force microscope (PIMM) is presented. With the PIMM, image scan and nanomanipulation can be performed in parallel through the collaboration between two cantilevers: one cantilever acts as an imaging sensor and the other is used as a manipulating tool. Two automated manipulation schemes were introduced for normal- and high-speed image scanning, respectively. An automated parallel manipulation task is managed by system control software with multithread through a procedure of dynamic image processing, task planning, two-tip collaboration, and a controlled pushing manipulation with amplitude feedback from the cantilevers. The efficiency of automated parallel nanomanipulation with normal-speed image scanning was validated by building nanoparticle patterns.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 1 )