By Topic

A system for unrestricted topic retrieval from radio news broadcasts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
James, D.A. ; UBILAB, Union Bank of Switzerland, Zurich, Switzerland

The “topic classification” systems described in the speech literature typically partition a collection of spoken messages into a small number of pre-defined topics. As such, they are only useful if the set of message topics does not vary over time. However, the techniques of textual information retrieval (IR) have long allowed for retrieval by arbitrary subject from a document collection. This paper describes experiments in unrestricted retrieval from a collection of radio news broadcasts. A hybrid message indexing strategy, with conventional word recognition and a fast lattice-based wordspotter, allows for the retrieval of news reports concerning any subject. The results show that retrieval can be carried out extremely quickly and that high accuracy is possible, even with recognition output errors

Published in:

Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on  (Volume:1 )

Date of Conference:

7-10 May 1996