By Topic

A VHDL-AMS modeling methodology for top-down/bottom-up design of RF systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maehne, T. ; Lab. de Syst. Microelectroniques (LSM), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Vachoux, A. ; Giroud, F. ; Contaldo, M.

This paper presents a modelling methodology for the top-down/bottom-up design of RF systems based on systematic use of VHDL-AMS models. The model interfaces are parameterizable and pin-accurate. The designer can choose to parameterize the models using performance specifications or device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analog/digital component behavior has been chosen to a good trade-off between accuracy, fidelity, and simulation performance. These properties make the models suitable for different design tasks such as architectural exploration or overall system validation. This is demonstrated on a model of a binary FSK transmitter parameterized to meet very different target specifications. The achieved flexibility and systematic model documentation facilitate their reuse in other design projects.

Published in:

Specification & Design Languages, 2009. FDL 2009. Forum on

Date of Conference:

22-24 Sept. 2009