By Topic

Practical physical layer network coding for two-way relay channels: performance analysis and comparison

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Louie, Raymond H.Y. ; Telecommun. Lab., Univ. of Sydney, Sydney, NSW, Australia ; Yonghui Li ; Vucetic, B.

This paper investigates the performance of practical physical-layer network coding (PNC) schemes for two-way relay channels. We first consider a network consisting of two source nodes and a single relay node, which is used to aid communication between the two source nodes. For this scenario, we investigate transmission over two, three or four time slots. We show that the two time slot PNC scheme offers a higher maximum sum-rate, but a lower sum-bit error rate (BER) than the four time slot transmission scheme for a number of practical scenarios. We also show that the three time slot PNC scheme offers a good compromise between the two and four time slot transmission schemes, and also achieves the best maximum sum-rate and/or sum-BER in certain practical scenarios. To facilitate comparison, we derive new closed-form expressions for the outage probability, maximum sum-rate and sum-BER. We also consider an opportunistic relaying scheme for a network with multiple relay nodes, where a single relay is chosen to maximize either the maximum sum-rate or minimize the sum-BER. Our results indicate that the opportunistic relaying scheme can significantly improve system performance, compared to a single relay network.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 2 )