Cart (Loading....) | Create Account
Close category search window

Measured temperature dependence of scintillation camera signals read out by geiger-Müller mode avalanche photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We are developing a prototype monolithic scintillation camera with optical sensors on the entrance surface (SES) for use with statistically-estimated depth-of-interaction in a continuous scintillator. We opt to use Geiger-Muller mode avalanche photodiodes (GM-APDs) for the SES camera since they possess many desirable properties; for the intended application (SES and PET/MR imaging), they offer a thin attenuation profile and an operational insensitivity to large magnetic fields. However, one issue that must be addressed in using GM-APDs in an RF environment (as in MR scanners) is the thermal dissipation that can occur in this semiconductor material. Signals of GM-APDs are strongly dependent on junction temperature. Consequently, we are developing a temperature-controlled GM-APD-based PET camera whose monitored temperature can be used to dynamically account for the temperature dependence of the output signals. Presently, we aim to characterize the output-signal dependence on temperature and bias for a GM-APD-based scintillation camera. We've examined two GM-APDs, a Zecotek prototype MAPD-3N, and a SensL commercial SPMArray2. The dominant effect of temperature on gain that we observe results from a linear dependence of breakdown voltage on temperature (0.071 V/°C and 0.024 V/°C, respectively); at 2.3 V excess bias (voltage above breakdown) the resulting change in gain with temperature (without adjusting bias voltage) is -8.5% per°C for the MAPD-3N and -1.5 % per °C for the SPMArray2. For fixed excess bias, change in dark current with temperature varied widely, decreasing by 25% to 40% as temperature was changed from 20°C to 10°C and again by 20% to 35% going from 10°C to 0°C. Finally, using two MAPD-3N to read out a pair of 3.5-by-3.5-by-20 mm3 Zecotek LFS-3 scintillators in coincidence, we observe a decrease from 1.7 nsec to 1.5 nsec in coincidence-time resolution as we lowered tempera- - ture from 23°C to 10°C.

Published in:

Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE

Date of Conference:

Oct. 24 2009-Nov. 1 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.