By Topic

Classification accuracy of multivariate analysis applied to 99mTc-ECD SPECT data in Alzheimer's disease patients and asymptomatic controls

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

With increasing life expectancy in developed countries, there is a corresponding increase in the frequency of diseases typically associated with old age, in particular dementia. In recent research, multivariate analysis of Positron Emission Tomography (PET) datasets has shown potential for classification between Alzheimer's disease (AD) patients and asymptomatic controls. In this work, the feasibility of multivariate analysis using Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) of Single Photon Emission Computed Tomography (SPECT) data is investigated. In order to obtain robust and reliable results, bootstrap resampling is applied and the robustness and classification accuracy of PCA/FDA are investigated. The robustness of the analysis is assessed by estimating the distribution of the angle between PCA/FDA discriminative vectors generated by bootstrap resampling, and the classification predictive accuracy is assessed using the 632 bootstrap estimator. The results indicate that PCA/FDA on SPECT data enables a robust differentiation between AD patients and asymptomatic controls based on three principal components, with a classification accuracy of 89%.

Published in:

2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC)

Date of Conference:

Oct. 24 2009-Nov. 1 2009