By Topic

Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in head and neck tumors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kuangyu Shi ; Dept. of Radiat. Oncology, Tech. Univ. Munchen, Munich, Germany ; Astner, S. ; Souvatzoglou, M. ; Miederer, I.
more authors

Kinetic modeling is one important method to assess the underlying physiology behind tracer uptake in molecular imaging. Although there are many well developed models which cover a broad range of applications, it is still challenging to quantitatively assess mathematical models with consideration of clinical applications and their biological nature. Tumor hypoxia is considered as one main resistance factor of standard radiotherapy and some chemotherapy. Hypoxia usually is the result of a decreased oxygen delivery to the cells either by an increase in diffusion distances or a decreased oxygen supply due to an inadequate tumor blood flow (perfusion). Under this assumption, we compared different hypoxia kinetic models. Dynamic PET images of the hypoxia tracer 18F-FAZA and the perfusion tracer 15O-H2O were acquired and the Thorwarth model, the reversible and irreversible two-tissue compartment model, the Logan plot and the Patlak plot were applied to model the process of tracer transport and accumulation under hypoxic condition. With the cross analysis between these two specific tracers, it is shown that hypoxia kinetic modeling delivers significantly different information than static measurements. Different models have a large variation under the same condition and they even can lead to opposite physiological interpretations. Our result shows that the irreversible two compartment model corresponds better to the expectation of a negative (inverse) correlation between hypoxia and perfusion.

Published in:

Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE

Date of Conference:

Oct. 24 2009-Nov. 1 2009