By Topic

Photoluminescence of rare earth3+ doped uniaxially aligned HfO2 nanotubes prepared by sputtering with electrospun polyvinylpyrolidone nanofibers as templates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Liu, L.X. ; Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, People’s Republic of China ; Ma, Z.W. ; Xie, Y.Z. ; Su, Y.R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3290974 

Rare earth (RE) ions (Eu3+,Tb3+) doped uniaxially aligned HfO2 nanotubes were prepared by radio frequency sputtering with electrospun polyvinylpyrolidone (PVP) nanofiber templates. The as-sputtered samples were annealed at different temperatures (500–1000 °C) in O2 ambient in order to remove their PVP cores and make the HfO2 shells well crystallized. Morphologies and crystal configuration of the samples were investigated by optical microscope, scanning electron microscopy, transmission electron microscopy, x–ray diffraction, and Raman spectroscopy. The nanotubes have uniform intact structure with an average diameter of 200 nm and a wall thickness of about 25 nm. Photoluminescence (PL) properties of the RE doped nanotubes have been studied in detail. The emission peaks of the aligned HfO2:Eu and HfO2:Tb nanotubes could correspond to the 5D07FJ (J=0–2) transitions of Eu3+ and the 5D47FJ (J=3–6) transitions of Tb3+, respectively. The PL intensities of the HfO2:RE3+ nanotubes were higher by several orders of magnitude than that of the films. This enhancement in the PL could be ascribed to the high density of surface states of HfO2:RE3+ nanotubes.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 2 )