Cart (Loading....) | Create Account
Close category search window

In situ method for real time measurement of dielectric film thickness in plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jang, Sung-Ho ; Department of Electrical and Computer Engineering, Hanyang University, 17 Haengdang-dong Seongdong-gu, Seoul 133-791, Republic of Korea ; Kim, Gun-Ho ; Chung, Chin-Wook

Your organization might have access to this article on the publisher's site. To check, click on this link: 

An in situ thickness measurement method of dielectric films (dual frequency method) was developed, and the thicknesses were measured in an inductively coupled plasma. This method uses a small ac bias voltage with two frequencies for thickness measurement. The dielectric thickness is obtained from measuring the amplitudes of the two frequency ac currents through a sensor, as well as using an equivalent circuit model describing impedance of the dielectric film and the plasma sheath. In the experiment, the thicknesses of Al2O3 film could be accurately measured in real time. To check the measurement reliability, the dual frequency method was compared with reflection spectrophotometry as a technique for optical thickness diagnostics. It was found that the dual frequency method agrees closely with reflection spectrophotometry at various rf powers and pressures. In addition, this method is very simple and can be installed anywhere in plasma reactors, in contrast with optical methods; therefore, it is expected to be applied to in situ surface diagnostics for various processing plasmas.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 2 )

Date of Publication:

Jan 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.