By Topic

Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Moore

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Krishnendu Chakrabarty ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA

Microfluidics-based biochips are revolutionizing high-throughput sequencing, parallel immunoassays, clinical diagnostics, and drug discovery. These devices enable the precise control of nanoliter volumes of biochemical samples and reagents. Compared to conventional laboratory procedures, which are cumbersome and expensive, miniaturized biochips offer the advantages of higher sensitivity, lower cost due to smaller sample and reagent volumes, system integration, and less likelihood of human error. This embedded tutorial paper provides an overview of droplet-based ¿digital¿ microfluidic biochips. It describes emerging computer-aided design (CAD) tools for the automated synthesis and optimization of biochips from bioassay protocols. Recent advances in fluidic-operation scheduling, module placement, droplet routing, pin-constrained chip design, and testing are presented.

Published in:

2010 23rd International Conference on VLSI Design

Date of Conference:

3-7 Jan. 2010